Minimizing path loss prediction error using k-means clustering and fuzzy logic

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust and Sparse Fuzzy K-Means Clustering

The partition-based clustering algorithms, like KMeans and fuzzy K-Means, are most widely and successfully used in data mining in the past decades. In this paper, we present a robust and sparse fuzzy K-Means clustering algorithm, an extension to the standard fuzzy K-Means algorithm by incorporating a robust function, rather than the square data fitting term, to handle outliers. More importantly...

متن کامل

Path Loss Prediction Using Fuzzy Inference System and Ellipsoidal Rules

It is well known as the prediction of radio wave path loss in urban environment plays a key role in order to correctly plan wireless systems and mobile communication networks. To obtain more flexible prediction models able to give accurate results, in recent years Soft computing Techniques has been exploited. In this study, a novel approach based on ellipsoidal fuzzy inference system EFIS is in...

متن کامل

Gene Expression Analysis Using Fuzzy K-Means Clustering

The recent advances of array technologies have made it possible to monitor huge amount of genes expression data. Clustering, for example, hierarchical clustering, self-organizing maps (SOM), kmeans clustering, has become important analysis for such gene expression data. We have applied the Fuzzy adaptive resonance theory (Fuzzy ART) [5] to the gene clustering of DNA microarray data and the clus...

متن کامل

Genetic Approach for Fuzzy Mining Using Modified K-Means Clustering

A fuzzy-genetic data-mining algorithm for extracting both association rules and membership functions from quantitative transactions is shown in this paper. It used a combination of large 1-itemsets and membershipfunction suitability to evaluate the fitness values of chromosomes. The calculation for large 1itemsets could take a lot of time, especially when the database to be scanned could not to...

متن کامل

Fuzzy K-means clustering with missing values

Fuzzy K-means clustering algorithm is a popular approach for exploring the structure of a set of patterns, especially when the clusters are overlapping or fuzzy. However, the fuzzy K-means clustering algorithm cannot be applied when the real-life data contain missing values. In many cases, the number of patterns with missing values is so large that if these patterns are removed, then sufficient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES

سال: 2018

ISSN: 1300-0632,1303-6203

DOI: 10.3906/elk-1710-104